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ABSTRACT 

The equations of motion f o r  a vehic le  with th rus t ,  l i f t ,  and drag 
forces ,  and a Newtonian g rav i t a t iona l  force a r e  derived i n  an ear th-  
f ixed  polar  coordinate system. This system of equations forms the 
d i f f e r e n t i a l  equations of cons t ra in t  i n  the calculus of va r i a t ions  
formulation of minimizing f l i g h t  time between two s e t s  of boundary con- 
d i t i o n s  with inequal i ty  constraints  Tmposed on the magnitude of the 
angle  of a t t a c k  or the product of the dynamic pressure and the magni- 
tude of the angle  of a t tack .  The necessary conditions f o r  opt imal i tp  
a r e  given exclusive of der ivat ion.  Also, a computational scheme is 
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DEFINITION OF SYMBOLS 

Defini t ion and Units 

vacuum th rus t  (kg) 

engine e x i t  a rea  (m2) 

reference a rea  (m2) 

vacuum s p e c i f i c  impulse (sec) 

drag coe f f i c i en t  

normal force coe f f i c i en t  

launch l a t i t u d e  (deg) 

launch azimuth (deg) 

ea r th ' s  ro t a t iona l  ve loc i ty  i n  the equator ia l  plane 
( rad lsec j  

ear th ' s  ro t a t iona l  ve loc i ty  i n  the f l i g h t  plane (rad/sec) 

atmospheric pressure 

atmospheric dens i ty 

t h rus t  (kg) 

drag force  (kg) 

normal force (kg) 

grav i ta  t iona 1 a c ce 1 era t ion (m/ s e c2) 

g rav i t a t iona l  cons tan t (m3/sec2) 

radius  from center  of ea r th  t o  veh ic l e  (m) 

ear th-f ixed ve loc i ty  (m/sec) 

iv 



DEFINITION OF SYMBOLS (Continued) 

Definit ion and U n i t s  

earth-fixed path angle measured from loca l  v e r t i c a l  
t o  ve loc i ty  vector (deg) 

range angle measured from earth-fixed launch point  
t o  radius vector (deg) 

mass of vehicle  (kg-sec2/m)) 

angle of a t t a c k  (deg) 

angle of a t t a c k  r a t e  (deg/sec) 

ea r th ' s  radius  (m) 

g rav i t a t iona l  accelerat ion a t  the sur face  of the 
e a r t h  (m/sec2) 

Mach 

a t t i t u d e  angle measured from the ear th-f ixed launch 
point  t o  the vehicle 's  t h rus t  vector  (deg) 

space-fixed a t t i t u d e  ang.le (deg) 

space-f ixed range angle (deg) 

earth-f ixed range (m) 

space-f ixed range (m) 

Lagrangian mu1 t i p l i e r s  

time (sec) 

space-fixed coordinate system 

earth-fixed coordinate system 

d /d t  

i n i t i a l  quantity 
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Definition and Units 
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unit vectors defined i n  Section I1 

constant to convert mass units to  pounds 
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TECHNICAL MEMORANDUM X-53130 

A SYSTEM OF EQUATIONS FOR OPTIMIZED POWERED FLIGHT TRAJECTORIES 

SUMMARY 

The equations of motion f o r  a vehic le  with thrus t ,  l i f t ,  and drag 
forces,  and a Newtonian gravi ta t iona l  force a r e  derived i n  an ear th-  
fixed polar coordinate system. This system of equations forms the d i f -  
f e r e n t i a l  equations of constraint  i n  the calculus of var ia t ions  formulation 
of minimizing f l i g h t  time between two s e t s  of boundary conditions with 
inequal i ty  constraints  imposed on the magnitude of the angle of a t t ack  
or the product of the dynamic pressure and the magnitude of the angle 
of attack. The necessary conditions f o r  optimality a re  given exclusive 
of derivation. Also, a computational scheme is given su i t ab le  fo r  a 
d i g i t a l  computer program. 

I. INTRODUCTION 

Normally while i n  the atmosphere a vehicle  is constrained t o  f l y  
a non-l i f t ing t ra jec tory ,  a f t e r  t i l t i n g  has been i n i t i a t e d  sho r t ly  a f t e r  
launch, i n  order t o  minimize the s t r u c t u r a l  s t r e s s e s  associated with 
appreciable angles of a t tack.  I n  essence, t h i s  implies t ha t  the aero- 
dynamic l i f t  is sacr i f iced ;  t h i s  may decrease the performance of the 
vehicle  depending on the l i f t - to -drag  r a t i o .  The problem of employing 
an angle of a t t ack  during an atmospheric f l i g h t  can be used i f  cons t ra in ts  
a r e  placed on functions r e l a t ed  to the s t r u c t u r a l  s t r e s s e s  on the vehicle .  
This type of problem is presented i n . t h i s  paper by the calculus of var ia -  
t ions technique where the constraint  functions r e l a t ed  t o  these s t r e s s e s  
a r e  e x p l i c i t  functions of the control var iab le ,  the angle of a t t ack ,  a. 

The purpose of t h i s  paper then is to  der ive the equations of motion 
i n  an atmospheric f l i g h t  and t o  formulate an optimization technique with 
inequal i ty  constraints  imposed on two functions r e l a t ed  t o  s t r u c t u r a l  
stresses encountered during the atmospheric f l i g h t .  The two functions 
chosen i n  t h i s  paper a r e  the product of the dynamic pressure and the 
magnitude of the angle of a t t ack  and the magnitude of the angle of a t t ack  
alone. 



11. DERIVATION OF THE EQUATIONS 0F.MOTION 

When calculat ing a space veh ic l e ' s  t r a j ec to ry  i n  the atmosphere, 
it is appropriate t o  der ive the equations of motion i n  a coordinate 
system f ixed i n  ( ro ta t ing  with) the ea r th  because the e a r t h ' s  atmosphere 
is assumed t o  r o t a t e  uniformly with the ea r th  and the ex terna l  forces  
ac t ing  on the vehic le  ( th rus t ,  l i f t  and drag) a r e  measured r e l a t i v e  t o  
the ro t a t ing  atmosphere. Also, the cent r i fuga l  and Coriol is  accelera-  
t i on  of a ro ta t ing  ea r th  af , fect  the vehic le ' s  motion. 

In t h i s  paper the equations of motion a r e  derived i n  a two- 
dimensional polar coordinate system. To simulate a ro t a t ing  ea r th ,  i t  
is assumed that  this  coordinate system ro ta t e s  with an angular ve loc i ty  
r e l a t i v e  t o  some i n e r t i a l  coordinate system. This angular ve loc i ty  is 
measured a t  the launch point  and is a function of the l a t i t u d e  and 
aiming azimuth a t  launch. 

I n  deriving the equations of motion, i t  is  convenient t o  def ine 
two Cartesian coordinate systems. The f i r s t  of these systems (denoted 
by %*) is space-fixed w i t h  i t s  Y*-axis d i rec ted  from the center  of the 
ea r th  through the launch point  and with i t s  X*-axis d i rec ted  along and 
p a r a l l e l  t o  the launch azimuth. 
earth-fixed with i ts  coordinate axes coinciding with the space-f ixed 
system a t  the t i m e  of launch. This system r o t a t e s  with an angular 
ve loc i ty  given by 

The second system (denoted by zE) is 

w' = w cos I) s i n  AZ 

r e l a t i v e  t o  the space-fixed system. I n  the above equation, w is the 
ea r th ' s  ro t a t iona l  ve loc i ty  i n  the equator ia l  plane, I) is the l a t i t u d e  
above the equator ia l  plane, and A, is the aiming azimuth. 

F i r s t ,  the  space-fixed ve loc i ty  vector  is derived i n  terms of the 
ear th-f ixed Cartesian coordinate system. A transformation is then made 
from the earth-fixed Cartesian system t o  a polar  coordinate system which 
is a l s o  fixed i n  the ear th .  The space-fixed acce lera t ion  vector  is then 
derived i n  terms of the polar coordinate system. F ina l ly ,  by Newton's 
second l a w  the external  forces  ac t ing  on the vehic le  are equated t o  the 
mass times the accelerat ion.  Taking the two components of t h i s  vector  
equation yields  the two s c a l a r  equations f o r  accelerat ion.  

2 
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FIGURE 1 

In  Figure 1, 1' and 3 r uni t  vector  i n  the space-fixed system with 

E is defined t o  be p a r a l l e l  t o  

* F and 5 being p a r a l l e l  t o  the X and Y ax i s ,  respectively.  The u n i t  
vectors  and 2 a r e  p a r a l l e l  t o  the and Y ax i s ,  respect ively,  i n  
the earth-fixed system. 
the earth-fixed ve loc i ty  vector  and Ea is defined to  be i n  the opposite 
d i r ec t ion  of the increasing earth-fixed f l i g h t  path angle, 1 9 ~ .  
re la t ionship  between and 5 and the u n i t  vectors i n  the space-fixed 
system is given by 

The uni t  vector  

The 

i; = cos w ' t  i - s i n  w ' t  3 (2.2) 

(2.3) 
- 
1 = s i n  w ' t  7 + cos w ' t  3.  

Similarly,  the re la t ionship  between 
polar coordinate system is given by 

and ?, and the un i t  vectors  i n  the 



The posit ion vector  i n  terms of the earth-fixed Cartesian system is 

E = %E + YES. 

The time der ivat ive of (2.6) i n  the space-fixed system gives the space- 
fixed veloci ty  vector i n  terms of the ear th-f ixed pos i t ion  and ve loc i ty  
components 

where the  t i m e  der ivat ives  of the u n i t  vectors  can be obtained from 
(2.2) and (2.3) which a r e  

- - - 
k = - w' s i n  w ' t  i - w' cos w ' t  j = - w' ,e 

(2.9) 
- 
,e = w' cos w ' t  T - w' s i n  w ' t  j = w' E. 

Subst i tut ing these values i n t o  (2.7) gives the space-fixed ve loc i ty  
vector 

E = ($ + W'YE) i; + (P, - a'%) 6 .  (2.10) 

The posi t ion and ve loc i ty  components i n  (2.10) i n  the earth-fixed polar 
coordinate sys t e m  a r e  

(2.11) 

(2.12) 

(2.13) 

E = r s i n  cp 

E YE = r cos cp 

$ = vE s i n  (cp + 9,) 

YE = VE cos (cpE + 9E). 

E 

(2.14) 

4 



.Subs t i tu t ing  back in to  (2.10) gives the space-fixed ve loc i ty  vector ,  i n  
terms of the earth-f ixed polar coordinate sys t e m  components, which 
becomes 

f = (.E s i n  ('pE + 4 E 

(2.15) 

Taking the time der iva t ive  of (2.15) i n  the space-fixed system and using 
~ (2.4) and (2.5) gives the space-fixed accelerat ion vector 

- cos (cpE + aE) s i n  cpE} - w l r  {sin (cpE + aE) s i n  cp E 

-V (6 + 5 (cpE + dE) E E  E + cos ('PE + aE) cos 'PE 

+ cos (cp E + dE) s i n  cpE } - wlvE {sin2 ((pE + 4E) + cos ('PE + 'E)} 

(2.16) 

5 



In  the earth-fixed polar coordinate system ? and a r e  

* = v cos dE (2.17) E 

s i n  dE. (2.18) vE 
+E r 

= -  

Subst i tut ing these equations i n t o  (2 .16)  and a f t e r  s impl i f ica t ion  (2.16) 
becomes 

(2.19) 

This equation gives the two components of acce lera t ion  measured i n  the 
earth-fixed polar coordinate system. 
d i r ec t ion  of the  increasing f l i g h t  path angle s ince  +Eq was defined i n  
the opposite d i rec t ion .  

The second component is i n  the 

FIGURE 2 



I !  

Assuming the vehic le  as a point mass subjected t o  the external 
forces  i n  Figure 2, the  accelerations caused by these forces  are equated 
t o  the  l i k e  components i n  equation (2.19) by Newton's second law. 
This y ie lds  the following two sca l a r  d i f f e r e n t i a l  equations 

(2 . 20) 
N 2 

m 
- 
m 

cos a! - - s i n  Q - (g - w' r) cos dE $E = - 

E 
- F - D  - - s i n  a + - N cos a + 1 (g - v; - wI2r)  s i n  9 - 2w' , 

'E mvE mvE vE 
(2.21) 

where 

F = Fv - AeP (2.22) 

D = - 1 pV2 C A = qCDoA (2.23) 
2 E Do 

(2.25) GM 
g = p  

where P and p a r e  determined from some atmospheric model, ARDC o r  
Pa t r ick  f o r  example. 
a s  exponential functions given by 

By instantaneously considering these quan t i t i e s  

P = Poe -7 (r-RJ (2.26) 

7 and p can be obtained by taking the inverse of (2.26) and (2.27), 
respect ively.  
i n  t he  optimization equations would be 

The p a r t i a l  der ivat ives  aP/& and ap/& which a r e  needed 

2 = - PP* (2.29) 

7 



and % i n  equations (2.23) and (2.24) a r e  considered as functions 
of Mach number, and the i r  der ivat ives  a r e  ignored i n  the optimization 
p r ob 1 em. 

= constant,  $ = -  FV 

go ISPV 
(2.30) 

w i l l  form the system of d i f f e r e n t i a l  equations of motion that have t o  
be solved simultaneously t o  determine a t ra jec tory .  The next s ec t ion  
w i l l  discuss the method of determining the optimum control  function, 
the angle of a t t ack  as a function of t i m e ,  such t h a t  a t r a j ec to ry  
minimizes t i m e  between two s e t s  of boundary conditions subjec t  t o  
equal i ty  and inequal i ty  constraints .  

111. CALCULUS OF VARIATIONS FORMULATION 

Normally while i n  the atmosphere a vehic le  is constrained t o  f l y  
a non-l i f t ing t ra jec tory ,  a f t e r  t i l t i n g  'has been i n i t i a t e d  sho r t ly  a f t e r  
launch, i n  order t o  minimize the s t r u c t u r a l  s t r e s s e s  associated with 
appreciable angles of a t tack .  In  essence t h i s  implies that the aero- 
dynamic l i f t  is sac r i f i ced  which may decrease the performance of the 
vehic le  depending-on the  l i f t  t o  drag r a t i o .  The problem of employing 
a n  angle of a t t ack  during a n  atmospheric f l i g h t  can be used i f  con- 
s t r a i n t s  a r e  placed on functions r e l a t ed  t o  s t r u c t u r a l  s t r e s s e s  on the 
vehicle.  This type of problem can be t rea ted  by the calculus of var ia -  
t ions technique where the cons t ra in t  functions r e l a t ed  t o  these stresses 
are e x p l i c i t  functions of the control var iab le ,  the angle of a t tack ,  a. 

Two such cons t ra in t  functions are used i n  t h i s  paper: 

8 



where QX and ac are numbers depending on the  design l imi t s  of the 

The f i r s t  equation (3.1) implies a cons t ra in t  on the product o the  
dynamic pressure,  q, and the  magnitude of the angle of a t tack ,  
whereas (3.2) constrains the magnitude of the angle of a t tack.  

veh ic l e  and x denotes the  set of s ta te  var iab les  (r, VE, 9E, 9, m)* 

The va r i a t iona l  problem may now be s t a t e d  as follows: It is 
desired t o  determine the  control  function, a(t), such that the  expression 

t f 
P 

is maximized subjec t  t o  the inequality cons t ra in ts  (3.1) and (3.2) and 
the d i f f e r e n t i a l  equations of constraint  

k = fi(X, a, t) i = 1, ..., n (3.4) i 

w i t h  the  boundary conditions 

io Xi(t0) = x (3.5) 

(3.6) 

where the qL's are the  terminal constraint  functions on the s t a t e  
var iab les  . 

I n  order t h a t  (3.3) is maximized the following necessary conditions 
m u s t  hold (see Reference 1): 

$ S O  k = l ,  2 (3.7) 

i = 1, ..., n 

9 



where 

and the  boundary conditions 

where the A. 's  and 4 ' s  a r e  Lagrangian mul t ip l i e r  var iab les  and the va ' s  
are mul t ip l ie r  constants evaluated a t  tf.  

Equation (3.8) can be wr i t ten  as 

1 

(3.13) 

then 

I f  F' i s  not an e x p l i c i t  function of time, then (3.14) becomes 

(3.15) 



Then, by equations (3.8) and (3.10), equation (3.15) becomes 

(3.16) 

I f  the  end conditions (3.6) a r e  not e x p l i c i t  functions of time, then 

s ince  (3.16) is t o  be s a t i s f i e d  from to to  tf. 

I f  we wish t o  minimize f l i g h t  t ime  between the boundary conditions 
(3.5) and (3.6) for  a vehic le  whose motion is governed by the d i f f e r e n t i a l  
equations of motion i n  p a r t  I, the expression (3.3) reduces t o  maximizing 

Ohf, t f l  = - tf (3.18) 

and the funct ion fo(xy a) is zero. 
minimizing tf. Equation (3.10) becanes 

Maximizing -tf is equivalent t o  

where the constraining equations (3.4) a r e  given by 

vE $E = - s i n  dE = f ,  r 

t = v cos % = f 2  E 

(3.20) 

(3.21) 

(3.22) 

11 



- F - D  -- 
'E mvE 

F 
S 

V 
h = -  = f,, 

go Isp, 

and the  inequal i ty  cons t ra in ts  are given by (3.1) and (3.2). The 
terminal constraints  (3.6) of the problem are given by 

ql = rf - r ( t f )  = 0 

$ , = v f - v ( t ) = O  E f  

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

where rf ,  Vf ,  and df are the desired end conditions.  

Applying equation (3.8) t o  (3.19) and assuming t h a t  (3.1) and (3.2) 
a r e  s a t i s f i e d  r e s u l t s  i n  the following system of d i f f e r e n t i a l  equations: 

x l = - - -  
K - O  

(3.28) 

1 2  

(3.29) 



1 i3 = - - =  3F' - h2 COS s i n  a +  D cos a 
avE 

(3.30) 

(3.31) 

(F - D) s i n  a +  N cos a . 1 aF' 
&l 

i\, = - - = 3 [(F - D) cos a - N s i n  

(3.32) 

Applying (3.9) t o  (3.14) y ie lds  the equation 

= -  h3 ( F - D + N , ) + & % ~  s i n a  - =  f a  1 [ vE 
3F' 
aa 

(3.33) 

The angle of a t t a c k  is determined from the  i t e r a t i v e  so lu t ion  of (3.33). 
I f  a t  some time the  angle of a t tack  does not s a t i s f y  the inequal i ty  
(3.1), then a q l a l  cons t ra in t  ex is t s .  During t h i s  cons t ra in t  period, 

13 



t he  angle of a t t ack  is computed by 

( 3 . 3 4 )  

a determines the s ign  of 2. The mul t ip l i e r  wl during the con- 
where lal 
s t r a i n t  is given by 

( 3 . 3 5 )  

Equations (3.29) and (3 .30 )  a r e  augmented by 

respect ively.  The cons t ra in t  ends once p1 goes t o  zero. 

I f  the  inequal i ty  ( 3 . 2 )  is n o t  s a t i s f i e d  by the  angle  of a t t a c k  
from ( 3 . 3 3 ) ,  the angle of a t t a c k  becomes 

a = + - & ,  ( 3 . 3 6 )  

where a, assumes the s ign  of a determined from ( 3 . 3 3 ) .  
s t r a i n t  p2 is given by 

During the con- 

( 3 . 3 7 )  

Again, the cons t ra in t  ends once p2 goes t o  zero. 



It m u s t  be noted here  t h a t  both inequal i ty  cons t ra in ts  cannot be 
considered simultaneously. 1% for example, (3.1) is considered, then 
p2 would be  zero; or  v i ce  versa ,  i f  (3.2) is considered. 

The problem remains now of se l ec t ing  the  i n i t i a l  values of the  
Lagrangian mul t ip l i e r s  such that a l l  of the necessary conditions and 
the  boundary conditions (3.25 - 3.27) a r e  s a t i s f i e d .  F i r s t ,  i t  is 
noted that Al(t) is a constant by equation (3.28). Furthermore, s ince  
R ( t f )  is allowed t o  vary i n  the problem presented i n  t h i s  paper, Al(t ) 
is zero by v i r t u e  of (3.11). Since fo(x,  a) is zero i n  equation (3.10f, 
t he  system of equations (3.29 - 3.32) is homogeneous i n  the A's. This 
property makes one of the  i n i t i a l  values of the A's a rb i t r a ry .  I n  t h i s  
paper, we have chosen 

By specifying an i n i t i a l  angle of a t t ack ,  %, and using (3.33), the  
i n i t i a l  value of & is given by 

(3.39) 

Furthermore, by specifying an i n i t i a l  angle of a t t a c k  r a t e ,  by and 
d i f f e r e n t i a t i n g  (3.33) with respect  t o  time and using (3.28), (3.29), 
A30, and bo, A20 can be determined. Since equations (3.29 - 3.32) 
a r e  independent of As, the  i n i t i a l  value of AS can be taken as zero. 

Thus, % and &, a r e  used t o  i s o l a t e  the terminal cons t ra in ts  (3.25 - 
3.27). 
values of the  A's are by (3.11) and (3.25 - 3.27) Once these terminal cons t ra in ts  have been s a t i s f i e d  the  terminal 

Since, i n  equation (3.12) the  qe's  are not  e x p l i c i t  functions of time, 
(3.12) is given by 

n 
(3 .40)  

which becomes (3.16) evaluated a t  tf. 



IV. APPLICATIONS FOR A DIGITAL COMPUTER PROGRAM 

I n  th i s  sec t ion ,  a computational scheme is  given s u i t a b l e  f o r  a 
d i g i t a l  computer program. F i r s t ,  the  inequal i ty  cons t ra in ts  on q 1 a1 
and a are ignored. This is the bas ic  program, and only s l i g h t  modifica- 
t ions are needed t o  include the inequal i ty  cons t ra in ts  which a r e  given 
a f t e r  the  bas i c  scheme. 

A. Application Without Inequal i ty  Constraints 

1. Input Data Needed 

Constants: go, Ro, C,, C2, A=, $, w, At, 

I n i t i a l  Conditions : (pEo’ r 0’ ’Eo’ 9 Eo 

Tables: CDo, s, Mach 

I so la t ion  Parameters: a, &, 

Vehicle Data: Fv(lbs),  Ispv(sec),  A(m2), Ae(m2), Wo(lbs). 

2. Preload Computations 

m = - W o  + C, 
0 

w’ = w s i n  AZ cos $ 

GM = go Rg. 

16 

(4.1) 

( 4 . 3 )  

(4.4) 

(4.5) 



To compute Azo and bo, let  

Then equation (3.33) becomes 

Taking the time derivative of (4.8) gives 

To determine j4 and k4, we compute: 

PO 

p = r - ~ ~  p 
In- 

In - I 
Y = ~ - R ~  P 

(4.9) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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a N  2N 

avE 'E 
N 2 = - = -  

= N4& + N,? + N2tE 

fi = D,? + D2iE 

. 
i 4  = ~ 4 1 :  + ~ 4 2  vE 

1 cos a + N, s i n  a 
[ b l  - N41 - A 

=&=1 
K41 ar m v  E 

(D - N ~ ~ )  COS a + N, s i n  a - 

(4.15) 

(4.16) 

(4.17) 

' (4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

then 

(4.25) 
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and 

Subs t i tu t ing  equations (3.29) and (3.30) f o r  i3 and i\4 i n t o  (4.10) and 
evaluat ing a t  to with h30 and bo and using the  above equations A20 
becomes 

where 

2 

mvE 0 s i n  %J + - $E + { e ( D  sin cq, - N cos @ +- 
rO vEO 

+=}I+ K, [(d2 ro - g) s i n  S, 0 

vEO 

and 

9~ + K  V s i n + .  
E o  0 

E 2  = 54 COS 
0 

(4.28) 

(4.29) 

3. Trajectory Integrat ion and I so la t ion  

At a time, t N y  the  equations of motion (3.20 - 3.24) and 
the  "lambda dot" equations (3.20 - 3.32) a r e  numerically in tegra ted  
from t N  t o  twl, where the var iables  ' p ~ ,  r, VEy %, h2y h3, h4, and A5 
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needed t o  s t a r t  the in tegra t ion  are given, have been precomputed, o r  
have been integrated from the t N - 1  time point. 
su re  and density a r e  determined from an atmospheric model subroutine 
incorporated i n t o  the program. The l i f t  and drag coef f ic ien ts ,  ' and 

are determined by Lagrangian in te rpola t ion  a s  functions of k c h  
number. 
subroutine . 

The atmospheric pres -  

The angle of a t t ack  a t  t N  is determined from the following 

Compute fa: 
from the t N - 1  time point.  

I f  fa 5 Tol., a has been determined. 

I f  fa > Tol., w e  go t o  equations ( 4 . 3 0 ) :  

The i n i t i a l  a t o  begin the i t e r a t i o n  is taken 

(To1 f Tolerance) 

fa a = a - T ,  
L a 

where 

1 afa 
f ; = s T - = -  h3 [(F - D + 2N4) cos a - N s i n  a 

20 

(F - D + 2N4) s i n  a +  N cos a . 1 - 

( 4 . 3 0 )  

( 4 . 3 1 )  

fa I f  1 ~ 1  5 Tol, then a has been determined. 
a 

fa I f  1 ~ 1  > Tol, compute a new a from ( 4 . 3 0 )  using the  

preceding a t o  compute fa and f& , and repeat t h i s  pro- 

cedure u n t i l  6 Tol. 

a 

fa 
a 



Trajec tory  Isolation:.  

ve loc i ty  
i s o l a t e s  

A t r a j ec to ry  cuts off on loca l  space-fixed c i r c u l a r  - the program may be modified t o  cu t  of f  on m y  ve loc i ty  - and 
a l t i t u d e  and the space-fixed f l i g h t  path angle. Since the 

vehic le ' s  motion is measured i n  an earth-fixed coordinate system, a 
transformation is used t o  compute the  space-fixed values f o r  ve loc i ty  
and the  path angle. The re la t ionships  are 

and 

( 4 . 3 3 )  

( 4 . 3 4 )  

% and & are then used t o  i s o l a t e  these end conditions. 
scheme given i n  Reference 2 is well s u i t e d  f o r  t h i s  problem. 

The i s o l a t i o n  

4 .  Additional Equations Useful i n  Traiectory Analysis 

The a t t i t u d e  of the  vehic le  measured from the  v e r t i c a l  
ear th-f ixed launch point  is given by 

x = 'PE + % f a, (4.35) 

and the  space-fixed a t t i t u d e  angle is given by 

x* = x + w' t .  .c ( 4 . 3 6 )  

The range of the vehic le  measured on the sur face  of the  e a r t h  from the 
earth-f ixed launch point is given by 

xxx = Ro CpE' ( 4 . 3 7 )  
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and the range measured from the space-fixed launch point is 

XXX* = XXX + Ro w ' t .  ( 4 . 3 8 )  

B. Application with q I a\ Constraint  

Input Data ( In  Addition t o  IIIA): QX, Azo, bo. Here QX is 
a constant which q la l  cannot exceed during the t ra jec tory ;  Azo and Lo 
are used as the i so l a t ion  parameters r a t h e r  than a and &, s ince  the 
angle of a t t ack  is determined from the  cons t ra in t  equation and cannot 
be used as an i so l a t ion  parameter. The computation of equations (4 .9  - 
4 . 2 9 )  is ignored i n  t h i s  modification of the program. 

The following subroutine is  used: 

W e  compute: 

( 4 . 3 9 )  

where ahas been determined from the  i t e r a t i o n  of fa. 

I f  g, 2 0, 1-1, = 0 and the angle of a t t ack  determined from the 
f 
tgen the  angle of a t t ack  becomes 

equation a r e  used i n  the main rout ine  of the program. I f  g, < 0, 

and 

( 4 . 4 0 )  

( 4 . 4 1 )  

Equations (3 .29 )  and ( 3 . 3 0 )  are then augmented by 

1-11 we bI)L 
respectively.  The cons t ra in t  period ends when p1 goes t o  zero. 

2 2  



C. Angle of Attack Constraint 

Input needed: arc, Azo, hQo 

The following subroutine is used: 

W e  compute: 

g, = @ - $. (4 . 42) 
If g,  2 0, p1 = 0 and t h e  angle of a t t ack  determined from the 

f a  equation a r e  used i n  the main rout ine  of the  program. 

I f  g2 < 0, then the  angle of a t t a c k  becomes 

a = + - % ,  (4.43) 

where a, assumes the  s i g n  of a determined from the f a  equation and 

The cons t r a in t  period ends where p2 goes t o  zero. 

V. CONCLUSIONS 

The optimization technique given i n  th i s  r epor t  has been success- 
The equations 

The r e s u l t s ,  which 
f u l l y  applied t o  the  Saturn V and Saturn I B  vehicles.  
were programmed f o r  the  IBM 7094 d i g i t a l  computer. 
a r e  t o  be published l a t e r ,  show that an increase i n  o r b i t a l  payload 
can be obtained as compared t o  the non- l i f t ing  f i r s t  s tage  t r a j e c t o r i e s .  
This increase of o r b i t a l  payload is cons is ten t  when the qlal  product is 
constrained t o  a reasonable value. The ex i s t ing  program does not  con- 
t a i n  the  angle of a t t a c k  constraint  a t  the present  time, bu t  it is f e l t  
that t h i s  can be e a s i l y  incorporated i n t o  the  program. 
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